A High Resolution Vertical Gradient Approach for Delineation of Hydrogeologic Units at a Contaminated Sedimentary Rock Field Site

Jessica Meyer

2013 - Solinst Symposium High Resolution, Depth-Discrete Groundwater Monitoring - Benefits & Importance

Georgetown, Ontario November 7, 2013

DNAPL Fractured Rock Site in Southern Wisconsin

Contamination in a fractured sandstone

• Multicomponent **DNAPL** source zone

Dissolved phase plume ~ 3 km long

Mixed Organic Contaminants Plume in Fractured Sandstone

- 154 monitoring locations
- 20 multilevel systems
- Total of 558 monitoring points
- Flow generally toward east to southeast

Pleistocene Unconsolidated Sediments Cambrian/Ordovician Sedimentary Bedrock

Objectives

• High resolution hydraulic basis for delineation of hydrogeologic units

• High resolution characterization of the mass distribution

Hydrogeologic Units (HGUs)

Represent partitions of the groundwater flow domain with contrasting hydraulic conductivities

Why are HGUs Important

Used as a framework for **ALL** conceptual <u>and</u> numerical models of groundwater flow and contaminant transport

All Groundwater Studies Require Delineation of HGUs

Position

Thickness

Lateral Extent/geometry

Hypothesis

High resolution head profiles identify the position / thickness of K, contrasts that can be used to delineate HGUs

1000 m

Meyer PhD, 2013

Discrete Fracture Network (DFN) Approach to Site Characterization

Parker et al., 2012, AQUA mundi

Multilevel System (MLS)

Generic Multilevel System

Definition:

A single device assembled on surface and then installed in a borehole or a multi-screened casing to divide the hole into many separated intervals for data acquisition from many depth-discrete segments of the hole

High Resolution MLS Design Objectives

- Avoid blending HGUs
 - Position monitoring zones and seals based on complimentary data sets
 - Use short monitoring zones
 - Seal un-monitored sections of the borehole
- Maximize the number of monitoring zones

Schematic Head Profile

Meyer PhD, 2013

Schematic Vertical Gradient Profile

Head Profiles are Geometric

Thin sections of large vertical gradient (inflections)

– Relatively low K_v

Thick sections of unresolvable vertical gradient

– Relatively high K_v

Meyer et al. 2008, Meyer PhD 2013

Head Profiles are Repeatable

Dec 2003
Jun 2009
Aug 2011

Meyer et al. 2008, Meyer PhD 2013

Comparison to Lithostratigraphy

Relatively low K_v

Relatively high K_v

Lithostratigraphy is not predictive of the position/thickness of K_v contrasts

Meyer et al. 2008, Meyer PhD 2013

Research Questions

 Do the vertical gradients correlate between locations

• What is the geologic basis for the shape of the head/vertical gradient profiles?

High Resolution MLS Transect

Key Points

• Vertical gradients occur at similar stratigraphic positions across the site (they correlate!)

• Indicate laterally extensive contrasts in K

 K contrasts are not coincident with lithostratigraphy

New Basis for Numerical Models Vertical Gradient Based Bedrock HGUs

How Much Resolution is Enough?

Lower resolution profiles

- do not accurately identify the position and thickness of K contrasts
- do not identify thin but important contrasts in K
- provide inaccurate (blended) heads and gradients

Acknowledgements

The research presented is a portion of Jessica Meyer's PhD dissertation.

Dr. Beth Parker: SupervisorDr. John Cherry: Collaborator and committee memberDr. Emmanuelle Arnaud: Collaborator and committee member

Funding and In Kind Support

Dr. Beth Parker's NSERC IRC and the University Consortium for Field Focused Groundwater Contamination Research

Westbay – Schlumberger Canada Ltd., Solinst, FLUTe, Stone Environmental, Golder

References

- Austin, D.C. 2005. Hydrogeologic controls on contaminant distribution within a multi-component DNAPL zone in a sedimentary rock aquifer in south central Wisconsin. Master's thesis, University of Waterloo.
- Lima, G., B.L. Parker, and J.R. Meyer. 2012. Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs. *Environmental Science & Technology* 46, no.11: 5756-5763.
- Meyer, J.R., B.L. Parker, and J.A. Cherry. 2008. Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. *Environmental Geology* 56, no.1: 27-44.
- Meyer, J.R. 2013. A high resolution vertical gradient approach to hydrogeologic unit delineation in fractured sedimentary rocks. PhD dissertation. University of Guelph.
- Parker, B.L., J.A. Cherry, and S.W. Chapman. 2012. Discrete fracture network approach for studying contamination in fractured rock. *AQUA mundi* 3, no.2: 101-116.